Masters of Health Magazine March 2021 | Page 60

to glyphosate. It's just astonishing what I found, even, ultimately, [linking it] to COVID-19.

It's been quite a year for me in terms of major breakthroughs in my understanding of how metabolism works and how it's getting messed up by glyphosate, and then how that's causing us to not be able to effectively deal with COVID-19.”

In normal physiology, your cells, specifically the mitochondria, function to help deplete your body of deuterium. Deuterium is a naturally occurring isotope of hydrogen. If you didn’t already know, deuterium is also known as heavy hydrogen, because it has a neutron in addition to the proton and electron in the hydrogen atom.

Provided your cell is healthy, it has deuterium-depleting enzymes and organelles that help remove deuterium from your cells. If your mitochondria are damaged by glyphosate, they’re not going to be able to eliminate the deuterium properly.

Deuterium is like iron in the way that it’s both essential in the right amounts and toxic in excess. Hydrogen is the smallest atom and by far the most common atom in your body. Deuterium, being a heavy hydrogen, has one extra neutron, in addition to the normal proton and electron that regular hydrogen has.

Now, your cells are surrounded by structured water, which is negatively charged and contributes to your body’s energy production by supplying deuterium-depleted hydrogen to lysosomes and mitochondria. The structured water is maintained by sulfates, which makes sulfate extremely important for health. Sulfate is made dysfunctional by glyphosate, which in turn destroys structured water, resulting in impaired energy production in the cell.5

“The mitochondria have [a] membrane, which has a part inside the membrane that's really, really important,” Seneff says. “That's where you have those protons, and you really don't want it to be deuterons. This is what Laszlo brought home to me."

How Your Body Creates Deuterium-Depleted Water

Endothelial NOS (eNOS) makes nitric oxide (NO), and for every molecule of NO that it makes, it produces two molecules of water, which are deuterium depleted. Stephanie believes the NO created by eNOS may act as a signal that deuterium-depleted water has been created. Interestingly enough, deuterium-depleted water is also created during the inflammatory process.

“The inflammation is there for a good reason, and the reason is to produce deuterium-depleted water,” Seneff says. “It’s all because the mitochondria are failing in their task of producing their own deuterium-depleted water, which they get in part through the structured water from the sulfate [and] through enzymes that are highly skilled at choosing hydrogen over deuterium …

NADH and NADPH are also fascinating. I've been chasing them through all the proteins. They are interesting because they are the carriers of that wonderful hydrogen that's not deuterium. When you trace what’s doing what, where, you realize that the cytoplasm is producing NADH and handing it over to the mitochondria.

The mitochondria then take that H [hydrogen atom] off and throw it into the intermembrane space. So, the whole process ends up with the intermembrane space being assured that this is H [hydrogen] and not D [deuterium].

This is crucial because then those protons, once they build up, come back through the ATPase [ATP synthase] pump. If they are deuterons, they are going to wreck the pump break it, and of course, then you can't make ATP.”

For clarification, the ATP synthase pump works like a mini-motor. When a hydrogen atom with one proton goes through it, it works flawlessly and generates ATP. If deuterium enters it, which has one neutron and one proton, making it twice the weight of hydrogen, it breaks that motor.