For clarification, the ATP synthase pump works like a mini-motor. When a hydrogen atom with one proton goes through it, it works flawlessly and generates ATP. If deuterium enters it, which has one neutron and one proton, making it twice the weight of hydrogen, it breaks that motor.
Interestingly, deuterium is everywhere, naturally, but your body has developed an intricate way to make it harmless by trapping it in the structured water, where it’s beneficial, as it actually supports the creation of structured water.
Problems arise when you cannot make enough structured water to sequester it all. Then, the deuterium gets loose, causing mitochondrial dysfunction, impairing energy production and contributing to chronic disease.
Glyphosate Damages Health in Many Ways
As noted by Seneff, glyphosate harms your health in a number of ways. For example, she cites a recent paper showing it causes endocrine disruption, which can lead to breast cancer, reproductive issues, obesity and thyroid problems.6
Another paper shows glyphosate sensitizes cells to be more receptive to cancer after exposure to other chemicals.7 “Glyphosate makes everything else more toxic than it would otherwise be,” Seneff says. “It disrupts your defense system against toxic chemicals.” Other research shows epigenetic and generational effects, even when no apparent problems can be found in the first generation exposed.8
"I think [COVID-19] is mostly about glyphosate. If you've accumulated a lot of glyphosate in your tissues, you're not going to do well with COVID-19, and that's because [your body] is trying to repair the mitochondria in the immune cells so that the immune cells can actually clear the virus. If they can't make ATP, they can't do their job, and the virus flourishes. ~ Stephanie Seneff, Ph.D."
Glyphosate also impairs flavoproteins — proteins that bind flavins. Many of these proteins play a crucial role in transferring hydrogen from NADH or NADPH to other molecules, essentially supporting the delivery of pure hydrogen to the mitochondria. Flavoproteins have a characteristic GxGxxG motif at the site where they bind phosphate in the flavins. The ‘G’ stands for glycine and the ‘x’ is a wildcard — any amino acid, including glycine.
This means they have at least three susceptible glycines at this critical region of the protein. Flavoproteins are molecules that facilitate the transfer of protons and electrons, and know how to avoid deuterium, by exploiting a special feature of hydrogen called proton tunneling.
All of them can be expected to be disrupted by glyphosate. A critical flavoprotein is succinate dehydrogenase, and several papers have shown it is adversely affected by glyphosate, Seneff says. It is the only enzyme that plays a role in both oxidative phosphorylation and the citric acid cycle in the mitochondria.
In addition to aromatic amino acids, the shikimate pathway is essential for riboflavin synthesis, and riboflavin, a B vitamin, is the main precursor to flavins. This means that riboflavin deficiency can be triggered from glyphosate exposure as well. Glyphosate also causes damage by:
> Increasing calcium uptake in cells, which causes toxicity to neurons
> Interfering with the ability to take glutamate out of your synapses
> Making manganese unavailable — This in turn disrupts and prevents glutamate from being turned into nontoxic glutamine after it’s removed from your synapses. The enzyme responsible for the conversion is also highly dependent on glycine, which could be replaced by glyphosate.