Now, if you have a distorted analog of glycine (in the form of glyphosate), the protein constructed from it is not going to work like it’s supposed to. In her book, Seneff details the amino acids in proteins that are most susceptible to damage because of what she calls a “glyphosate susceptible motif.”
“It’s really fascinating biology and so terrifying when you think of the potential consequences, if I'm right,” she says. “It matches so well with all the diseases that are going up dramatically in our society that I really think I'm onto something huge here.”
An aromatic amino acid called EPSP synthase is a critical enzyme that almost surely gets disrupted by glyphosate through this mechanism of substituting for glycine. This gets a bit technical, but it is important. The plant version of EPSP synthase binds a phosphate group in its substrate phosphoenolpyruvate at a site where there is a highly-conserved glycine residue (highly conserved usually means that it is critical for proper function).
It has been shown experimentally that, if you change the DNA code so that the glycine is substituted by an amino acid called alanine (one extra methyl group), the enzyme becomes completely insensitive to glyphosate at any concentration. It also takes a hit on phosphate binding because of the extra methyl group, but you can tweak another amino acid nearby to fix this problem, while still keeping its insensitivity to glyphosate.
Researchers from Dow-Dupont did exactly this to a maize version of EPSP synthase using CRISPR technology and were able to create synthetically a version of the maize’s own EPSP synthase that was completely resistant to glyphosate. The title of this paper is: “Desensitizing Plant EPSP Synthase to Glyphosate: Optimized Global Sequence Context Accommodates a Glycine-to-Alanine Change in the Active Site.”2
The shikimate pathway is the pathway that produces aromatic amino acids, which are essential to humans as we cannot create these amino acids in our body. The argument is we're not susceptible to glyphosate because our cells don't have EPSP synthase — in fact, they don’t have the entire shikimate pathway.
However, our gut microbes do have that pathway, and they use it to make essential amino acids for the host. So, our gut microbes are indeed affected by glyphosate, and when they’re damaged, our health can suffer in any number of ways.
But what might be an even more devastating problem with glyphosate is the way it probably messes up a large number of proteins that bind phosphate at a site where there is at least one, and often three, highly conserved glycine residues. Glyphosate slips its methylphosphonate group into the spot that is supposed to be where phosphate from the substrate fits snugly. Phosphate can’t bind because glyphosate is in the way.
The arguments for why glyphosate specifically disrupts proteins that depend on glycine for phosphate binding are described more fully in a paper Seneff published together with colleagues arguing that glyphosate is a major factor in kidney failure among young agricultural workers in Central America.3
The Importance of Deuterium
Laszlo Boros is a professor of pediatrics at UCLA and an expert on deutenomics, “the science of autonomic deuterium discrimination in nature.”4 After reading one of Seneff’s papers, he contacted her, suggesting she look into deuterium.
“I was blown away, and I immediately saw the connection to glyphosate,” she says. “This was a year ago in December, and I've just been reading everything I can on deuterium since then and hooking it to glyphosate. It's just astonishing what I found, even, ultimately, [linking it] to COVID-19.