Masters of Health Magazine November 2021 | Page 17

The human microbiome is considered so crucial to human health that the National Institute of Health launched the Human Microbiome Project in 2007 with the explicit goal of analyzing the genomes of all the microbes that live in the human body. By 2020, over 200,000 genomes from the human gut microbiome alone have been cataloged and published, along with 170 million protein sequences from 4,600 bacterial species (Science Daily, 2020).

 

However, more than 70% of these bacterial species had never been cultured in the lab. Their activity in the body is still unknown – a telling indicator of the richness and diversity of the human microbiome and the limitations of our knowledge about it. In addition, recent studies reveal that the human microbiome is quite susceptible to environmental effects and can undergo rapid changes due to outside influence (Vangay, 2018; Kaplan, 2019; Groussin, 2021).

 

The soil microbiome is at least equally and probably much richer and more diverse than the human microbiome. It represents the greatest reservoir of biological diversity in the world (Merten, 2020). It promotes soil fertility and plant health. Proponents of regenerative agriculture also rely on a healthy soil microbiome to do the heavy lifting for carbon sequestration – pulling excess carbon out of the atmosphere to counter the impact of climate change.

 

THE UNIQUE RISK OF GENETICALLY ENGINEERED MICROBES 

For centuries, the way humanity altered the genome of living organisms such as crops and livestock was through natural breeding methods. The changes were limited by combinations and mutations that occur naturally through reproduction. With today’s genetic engineering technology, scientists can now create or insert entirely new DNA sequences, hoping to impart desired traits to the genetically modified organism (GMO).

 

Since its inception, however, the technology often resulted in unanticipated consequences, collateral damage to the genome and organism. Recent research shows that even the recently developed gene-editing methods can produce random genetic changes in a relatively uncontrollable manner (Davies, 2019; Teboul, 2020). A recent article described these substantial changes as “chromosomal mayhem” (Ledford, 2020).