Masters of Health Magazine February 2026 | Page 75

  • (for example, bone remodeling, fine-tuned insulin signaling, long‑term genomic surveillance). [121728]

  • Ultimately fail in excitable tissues and hormone axes when buffering and conservation are exhausted, yielding the classic clinical syndromes of hypomagnesemia. [72124]

  • A formal, quantitative hierarchy of magnesium allocation remains incomplete, and many key transporters and regulatory feedbacks are still being elucidated, but the converging evidence describes a consistent pattern: magnesium is functionally triaged to sustain core ATP-dependent viability, membrane excitability, and essential repair functions, while chronic shortfalls manifest first as subtle metabolic and structural compromise and finally as overt neuromuscular and cardiovascular instability. [1101123]

    Taken together, magnesium emerges as a centrally managed but locally negotiated resource that the body “spends” to keep the most vital processes running for as long as possible.

    Magnesium stores in bone and muscle, dynamic control by the gut and kidney, and fine‑tuned cellular transporters all work to preserve extracellular ionized magnesium and MgATP in critical organs, especially the heart, brain, and other excitable or metabolically active tissues. Within cells, the chemistry of MgATP, the sensitivity of ion channels and DNA repair enzymes to Mg²⁺, and the adaptability of growth and stress‑response pathways create an implicit hierarchy: immediate survival functions such as membrane potential, ATP production, and essential repair are protected first, while growth, structural maintenance, and long‑term metabolic flexibility are allowed to deteriorate under chronic insufficiency.

    Viewing clinical magnesium deficiency through this lens helps explain why early manifestations are subtle and systemic, why excitable tissues and hormonal networks fail so dramatically when buffering is exhausted, and why even modest, persistent deficits can drive long‑term cardiovascular, skeletal, and metabolic disease.

    References

    1. Long S, Romani AM. Role of Cellular Magnesium in Human Diseases. Austin J Nutr Food Sci. 2014 Nov 18;2(10):1051. https://pmc.ncbi.nlm.nih.gov/articles/PMC4379450/

    2. Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys. 2011 Aug 1;512(1):1-23. https://pmc.ncbi.nlm.nih.gov/articles/PMC3133480/

    3. Tseng MH, Konrad M, Ding JJ, Lin SH. Clinical and genetic approach to renal hypomagnesemia. Biomed J. 2022 Feb;45(1):74-87. https://pmc.ncbi.nlm.nih.gov/articles/PMC9133307/

    4. Seo JW, Park TJ. Magnesium metabolism. Electrolyte Blood Press. 2008 Dec;6(2):86-95. https://pmc.ncbi.nlm.nih.gov/articles/PMC3894481/

    5. de Baaij JH, Hoenderop JG, Bindels RJ. Regulation of magnesium balance: lessons learned from human genetic disease. Clin Kidney J. 2012 Feb;5(Suppl 1):i15-i24. https://pmc.ncbi.nlm.nih.gov/articles/PMC4455826/

    6. Reddy, S. T., Soman, S. S., & Yee, J. (2018). Magnesium balance and measurement. Advances in Chronic Kidney Disease, 25(3), 224–229. https://pmc.ncbi.nlm.nih.gov/articles/PMC9920010/

    7. Ray E, Mohan K, Ahmad S, Wolf MTF. Physiology of a Forgotten Electrolyte-Magnesium Disorders. Adv Kidney Dis Health. 2023 Mar;30(2):148-163. https://pmc.ncbi.nlm.nih.gov/articles/PMC10291516/

    8. Darragh-Hickey, C., Kaur, S., Flowers, K. C., Allen, G. T., Shipman, A. R., & Shipman, K. E. (2022). Investigative algorithms for disorders affecting plasma magnesium: A narrative review. Journal of Laboratory and Precision Medicine, 7, 21. https://jlpm.amegroups.org/article/view/6943/html

    9. De Feo ML. Magnesium disorders: clinical experience and review of the literature. Clin Cases Miner Bone Metab. 2009 Sep;6(3):220-2. https://pmc.ncbi.nlm.nih.gov/articles/PMC2811353/

    10. Wolf FI, Trapani V. Cell (patho)physiology of magnesium. Clin Sci (Lond). 2008 Jan;114(1):27-35. https://portlandpress.com/clinsci/article-abstract/114/1/27/68508/Cell-patho-physiology-of-magnesium?redirectedFrom=fulltext

    11. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015 Jan;95(1):1-46.

    https://journals.physiology.org/doi/full/10.1152/physrev.00012.2014

    12. Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003 May;24(2):47-66. https://pmc.ncbi.nlm.nih.gov/articles/PMC1855626/

    13. Matsuda-Lennikov M, et al. Magnesium transporter 1 (MAGT1) deficiency causes selective defects in N-linked glycosylation and expression of immune-response genes. J Biol Chem. 2019 Sep 13;294(37):13638-13656. https://pmc.ncbi.nlm.nih.gov/articles/PMC6746436/

    14. Joshi A, Gohil VM. Cardiolipin deficiency leads to the destabilization of mitochondrial magnesium channel MRS2 in Barth syndrome. Hum Mol Genet. 2023 Dec 1;32(24):3353-3360. https://academic.oup.com/hmg/article/32/24/3353/7276457

    15. Arancibia-Hernández YL, Hernández-Cruz EY, Pedraza-Chaverri J. Magnesium (Mg2+) Deficiency, Not Well-Recognized Non-Infectious Pandemic: Origin and Consequence of Chronic Inflammatory and Oxidative Stress-Associated Diseases. Cell Physiol Biochem. 2023 Feb 1;57(S1):1-23. https://www.cellphysiolbiochem.com/Articles/000603/index.html

    16. Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients. 2021 Mar 30;13(4):1136. https://pmc.ncbi.nlm.nih.gov/articles/PMC8065437/

    17. (Also 19) Hartwig A. Role of magnesium in genomic stability. Mutat Res. 2001 Apr 18;475(1-2):113-21. https://www.sciencedirect.com/science/article/abs/pii/S0027510701000744

    18. Taylor, M. R. (2014). The role of divalent metal ions in enzymatic DNA ligation (Doctoral dissertation). University of Michigan. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/108846/trotsky_1.pdf

    19. Killilea DW, Ames BN. Magnesium deficiency accelerates cellular senescence in cultured human fibroblasts. Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5768-73. https://pmc.ncbi.nlm.nih.gov/articles/PMC2311331/

    20. Stanojević M, et al. The Impact of Chronic Magnesium Deficiency on Excitable Tissues-Translational Aspects. Biol Trace Elem Res. 2025 Feb;203(2):707-728. https://link.springer.com/article/10.1007/s12011-024-04216-2

    21. Disorders of Magnesium Metabolism. EJIFCC. 1999 Jul 7;11(2):36-44. https://pmc.ncbi.nlm.nih.gov/articles/PMC6357249/

    22. Ayuk J, Gittoes NJ. Contemporary view of the clinical relevance of magnesium homeostasis. Ann Clin Biochem. 2014 Mar;51(Pt 2):179-88. https://journals.sagepub.com/doi/10.1177/0004563213517628

    23 . Kothari M, et al. A Comprehensive Review on Understanding Magnesium Disorders: Pathophysiology, Clinical Manifestations, and Management Strategies. Cureus. 2024 Sep 1;16(9):e68385. https://pmc.ncbi.nlm.nih.gov/articles/PMC11444808/

    24 . Gragossian A, Bashir K, Bhutta BS, et al. Hypomagnesemia. [Updated 2023 Nov 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500003/

    25 . Parr, R. M. (2001). Chapter 14. Magnesium. In Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements, Human vitamin and mineral requirements. Food and Agriculture Organization of the United Nations. https://www.fao.org/4/y2809e/y2809e0k.htm

    26 . Bayle D, et al. Magnesium Deficiency Alters Expression of Genes Critical for Muscle Magnesium Homeostasis and Physiology in Mice. Nutrients. 2021 Jun 24;13(7):2169. https://pmc.ncbi.nlm.nih.gov/articles/PMC8308210/

    27. Sankova, M. V., et al. (2024). Magnesium deficiency and its interaction with the musculoskeletal system, exercise, and connective tissue disorders. Sport Sciences for Health, 20(3), 715–726. https://link.springer.com/article/10.1007/s11332-024-01179-8

    28 . Rude RK. Magnesium deficiency: a cause of heterogeneous disease in humans. J Bone Miner Res. 1998 Apr;13(4):749-58. doi: 10.1359/jbmr.1998.13.4.749. https://onlinelibrary.wiley.com/doi/full/10.1359/jbmr.1998.13.4.749

    29 . Cazzola R, Della Porta M, Piuri G, Maier JA. Magnesium: A Defense Line to Mitigate Inflammation and Oxidative Stress in Adipose Tissue. Antioxidants (Basel). 2024 Jul 24;13(8):893. https://pmc.ncbi.nlm.nih.gov/articles/PMC11351329/